Chem. Ber. 114, 1343-1365 (1981)

Metallcarbonyl-Brückenligand-Sechsringsysteme

Armin Trenkle und Heinrich Vahrenkamp*

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 28. Juli 1980

Gezielte Synthesen ergaben zahlreiche Sechsringkomplexe 5 und 9 des Typs $L_nM(EMe_2 - E'Me_2)_2$ -M' L_n mit M, M' = Cr, Mo, W, Mn, Fe, Co, Ni und E, E' = P, As. Vorstufen waren einkernige metallorganische Lewis-Basen $L_nM - EMe_2 - E'Me_2$ und $L_nM(EMe_2 - E'Me_2)_2$, deren Liganden $EMe_2 - E'Me_2$ z. T. am Komplex synthetisiert wurden. Nebenreaktionen der Synthesen lieferten u. a. kettenförmige Mehrkernkomplexe, von denen einige oligomer waren.

Metal Carbonyl-Bridging Ligand-Six-membered Ring Systems

Directed syntheses yielded numerous six-membered ring complexes 5 and 9 of the type $L_nM_{(EMe_2 - E'Me_2)_2}M'L_n$ with M, M' = Cr, Mo, W, Mn, Fe, Co, Ni and E, E' = P, As. Precursors were mononuclear organometallic Lewis bases $L_nM - EMe_2 - E'Me_2$ and $L_nM(EMe_2 - E'Me_2)_2$ whose ligands $EMe_2 - E'Me_2$ were partly synthesized in the complex. Side reactions of the syntheses produced among others chain-like polynuclear complexes some of which were oligomeric.

Während Chelatringkomplexe, speziell solche mit sechsgliedrigen Ringen, in großer Zahl bekannt sind, sind Organometall-Komplexe mit zwei¹⁻⁷⁾ oder drei^{8,9)} Metallatomen im Sechsring vergleichsweise selten und bisher noch kaum^{5,6)} Gegenstand gezielter Synthesen gewesen. Es war jedoch zu vermuten, daß die vorteilhafte Reaktivität der meisten Metallcarbonyl-Verbindungen auch die gezielte Synthese von Metallcarbonyl-Brückenligand-Sechsring-Mehrkernkomplexen zulassen sollte. Da uns diese wegen ihrer Stereochemie und potentiellen Multimetall-Reaktivität attraktiv erschienen, überprüften wir die Möglichkeiten zum schrittweisen Aufbau von Systemen des Typs A. Bei diesen erlauben es die Variationsmöglichkeiten der Komplexbausteine, Verbindungen mit zwei, drei oder vier verschiedenen Ringgliedern zu formulieren.

$$ER_2-E'R_2 M'L_n M, M' = Organometall-EinheitenER_2-E'R_2 E, E' = P, As$$

Ausgangsverbindungen

Aufbaureaktionen zu den Sechsringen A können von den Komplexen $L_nM - ER_2 - E'R_2$ ausgehen, die mit sich selbst reagieren müssen, oder von den Komplexen $L_nM(ER_2 - E'R_2)_2$, die mit substituierbaren Organometallverbindungen umzusetzen sind. Erstere sind monofunktionelle, letztere bifunktionelle metallorganische Lewis-

Chem. Ber. 114 (1981)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/0404 – 1343 \$ 02.50/0 Basen. Von ersteren haben wir schon gezeigt^{4,10-12)}, daß sie aus den Bausteinen L_nM , ER_2 und $E'R_2$ oder E_2R_4 bzw. geeigneten Vorläufern davon zusammenzusetzen sind.

Zu den beschriebenen Vertretern 1a - c, e und I des ersten Typs synthetisierten wir jetzt die zehn weiteren Komplexe 1. Dazu wurden P_2Me_4 bzw. As₂Me₄ mit den THF-Komplexen von Cr(CO)₅, Mo(CO)₅, W(CO)₅ und CpMn(CO)₂, mit BrMn(CO)₅, Fe(CO)₂(NO)₂, Co(CO)₃NO und Ni(CO)₄ umgesetzt. Die metallorganischen Lewis-Basen 1 sind mit Ausnahme von 1h, das sofort weiterreagierte (s. u.), und 1o, das nicht analysenrein zu erhalten war, isolierbar und sind sehr luftempfindliche, gelb bis rot gefärbte Öle. Sie zeigen in den IR-Spektren die erwarteten Banden (Tab. 1). In den ¹H-NMR-Spektren ordnen wir das Signal bei höherem Feld der unkoordinierten EMe₂-Gruppe zu. Hier zeigen die P₂Me₄-Liganden erwartungsgemäß ein 8-Linien-Muster, das nur bei 1g durch Quadrupoleffekte gestört ist¹³).

				-	-			
	L _n M	E		L _n M	Е		L _n M	Е
1a ¹⁰⁾	(CO)5Cr	Р	lf	Br(CO) ₄ Mn	Р	1 k	(CO)5W	As
b ¹⁰⁾	(CO)5Mo	Р	g	NO(CO)2Co	Р	l ¹²⁾	(CO)₄Fe	Аs
c ¹⁰⁾	(CO)5W	Р	h	(CO)3Ni	Р	m	Br(CO) ₄ Mn	Ав
d	Cp(CO) ₂ Mn	Р	i	(CO) <u>5</u> Cr	As	n	(NO)2COFe	As
e ¹²⁾	(CO)4Fe	Р	j	(CO) ₅ Mo	As	0	NO(CO) ₂ Co	Aв

L_nM-EMe₂-EMe₂

Tab. 1. IR(Cyclohexan, cm⁻¹)- und NMR (Benzol, int. TMS, ppm)-Daten der neuen Komplexe 1

	V	(M – CO) bz	w. v(M – N	O)	$\delta(M - EMe_2)$	$\delta(E - EMe_2)$
1 d ^{a)}	1937 st	1875 st			1.03 c)	0.83 e)
f b)	2080 m	2016 st	2000 st	1955 st	1.35 ^d)	1.01 ^ŋ
g b)	2037 st	1975 st	1795 st		0.95	0.90
ĭ	2056 m	1940 sst			1.00	0.83
j	2066 m	1957 sst			1.03	0.82
k	2064 m	1939 sst			1.13	0.78
m	2074 m	2009 st	1998 st	1955 st	1.10	0.80
n	2010 st	1764 st	1725 st		0.95	0.77
0	2034 st	1988 st	1773 st		1.26	1.12

^{a)} $\delta(Mn - Cp) = 4.18$, J = 2.4 Hz. $-^{b)}$ ¹H-NMR-Spektren mit z. T. sehr breiten Linien. $-^{c)} J = 5.6$, 8.2 Hz. $-^{d)} J = 9.0$, 11.0 Hz. $-^{c)} J = 4.6$, 11.6 Hz. $-^{f)} J = 18.2$, 32.6 Hz.

Zur Synthese heteronuclearer Sechsringkomplexe sind die bifunktionellen Lewis-Basen 2 nötig. Von diesen wurden 2a - f durch Umsetzung der (CO)₄M-Norbornadien-Komplexe mit Tetramethyldiphosphan bzw. -diarsan gewonnen. Entsprechend der Tatsache, daß dabei zwei bifunktionelle Reagentien miteinander umgesetzt wurden, verliefen diese Reaktionen nicht eindeutig. Beiprodukte, die auch durch Optimierung der Reaktionsbedingungen nicht zu vermeiden waren, waren die fertigen Sechsringkomplexe (s. u.) und die nachfolgend beschriebenen Oligomeren. Zudem fielen nach Ausweis der Spektren nur 2b, d, e und f wie erwartet als *cis*-Isomere und 2a und c als nicht zu trennende *cis-trans*-Isomerengemische an. Die in unverdünnter Form unter Sechsringbildung und As₂Me₄-Abspaltung zerfallenden Komplexe 2d - f konnten nicht analysenrein isoliert werden. Die bei diesen Reaktionen in mittleren Ausbeuten anfallenden Oligomeren 3 entstanden nur mit P_2Me_4 als Brückenligand. Ihre Bildung ist damit zu erklären, daß die nach Abspaltung des Norbornadiens vorliegenden Zwischenstufen $Me_2P - PMe_2 - M(CO)_4$ mit sich selbst reagieren können. Auf diesem Wege können auch schon die Sechsringe entstehen. Der Oligomerisationsgrad n dieser kettenförmigen schwerlöslichen Verbindungen wurde mit Hilfe der Elementaranalysen abgeschätzt. Zu ihrer Struktur erlauben die IR-Spektren nur die Aussage, daß an den Metallatomen sowohl *cis*- als auch *trans*-Verknüpfung vorliegt.

Komplexe 2 mit dem "gemischten" Liganden $Me_2P - AsMe_2$, der in freier Form unbekannt ist, mußten stufenweise synthetisiert werden. Dazu wurden zunächst, wie für 4b beschrieben¹⁴⁾, die doppelt Me_2PH - bzw. Me_2AsH -substituierten Komplexe 4 hergestellt. Diese ließen sich mit LiCH₃ metallieren und dann mit Me_2PCl bzw. Me_2AsCl zu 2g - i umsetzen. 2h und i fielen dabei wie ihre Ausgangskomplexe 4 als *cis*-Isomere, 2g als 1:1-*cis*-trans-Gemisch an. 2i wurde nicht analysenrein erhalten, da es hartnäckig Me_2PCl festhielt, wie es auch bei anderen basischen PMe_2 -Verbindungen vorkommt¹⁵⁾. Oligomere wie 3 entstanden bei dieser Darstellungsweise naturgemäß nicht.

				L _n M	E	E'		L _n M	Е	E'
			22	(CO) ₄ Cr	Р	P	21	(CO) ₄ W	As	As
	EM	le ₂ -E'Me ₂	b	(CO)₄Mo	Р	Р	g	(CO) ₄ Cr	Р	Аs
LnI	่≀ `⊾™	Ha-F'Mea	c	(CO) ₄ W	Р	Р	h	(CO) ₄ Mo	Р	Aв
	1.14	(c) 15 mc2	d	(CO) ₄ Cr	Аs	Аs	i	(CO) ₄ Mo	As	Р
			e	(CO)₄Mo	Аs	Аs		1		
IM€	≥₂P−F	Me ₂ -M(CO) ₄] _n -PN	le ₂ –PMe ₂		(CO)	M(EMe	2H)2		
	м	n					ME	:		
38	Cr	≈ 5			-	4a	Cr F			
b	Mo	≈ 3				b ¹⁴⁾	Mo F	•		
c	w	≈7				c	Mo A	5		

Tab. 2. IR (Cyclohexan, cm⁻¹)- und NMR (Benzol, int. TMS, ppm, Hz)-Daten der Komplexe 2

			v(CO)	I		$\delta/J (M - EMe_2)$	$\delta/J (E - E'Me_2)$
2 8	cis trans	1999 m 1886 sst	1910 st	1898 sst	1893 st	m bei δ	= 0.8-1.4
ь	cis	2014 m	1921 st	1907 sst	1895 st	1.14/4.4, 6.2	0.92/4.8, 12.2
c	cis trans	2014 m 1884 sst	1915 st	1899 sst	1890 st	m bei δ	= 0.7-1.6
d	cis	2009 m	1910 st	1894 sst	1883 st	1.13	0.97
e	cis	2022 m	1917 st	1905 sst	1886 st	1.14	0.95
f	cis	2013 m	1907 st	1893 sst	1882 st	1.25	0.92
g	cis trans	2004 m 1886 sst	1915 st	1896 st	1886 st	1.20/6.1 a) 1.35/6.4 a)	0.91/10.3 0.98/11.2
h	cis	2017 m	1921 st	1906 st	1895 st	1.20/5.2 ^{a)}	0.89/10.4
i	cis	2018 m	1921 st	1907 st	1894 st	1.14/11.2	0.87/10.6

a) Pseudotriplett, als J ist der Abstand der äußeren Linien angegeben.

Die metallorganischen Lewis-Basen 2 sind gelblich gefärbt, niedrig schmelzend (z. T. ölig), gut löslich und mäßig luftempfindlich. Ihre IR-Spektren (Tab. 2) dienten zur Festlegung der angegebenen Konfigurationen. Die ¹H-NMR-Spektren zeigen die erwarteten Signallagen für freie und koordinierte EMe2-Gruppen (Tab. 2). Im Falle der nicht isomerenreinen Komplexe 2a und c konnten die ¹H-NMR-Spektren nicht einfach interpretiert werden. Die in einigen Fällen aufgenommenen ³¹P-NMR-Spektren entsprachen ebenfalls der Erwartung¹³⁾.

Homodinucleare Sechsringkomplexe

Die Sechsringkomplexe 5 mit zwei gleichen Carbonylmetall-Baugruppen waren auf drei Wegen zugänglich: durch die schon erwähnte spontane E₂Me₄-Abspaltung aus einigen Organometall-Basen 2, durch CO-Abspaltung aus den Ausgangskomplexen 1 und durch stufenweise Synthese aus den entsprechenden Komponenten 2 und ML_n. Wir untersuchten ausführlich die Thermolyse der Verbindungen 1. Sie war erfolgreich für 5a - j, von denen $5a^{4}$ und g^{2} schon beschrieben sind. Die zur Umwandlung nötigen Temperaturen lagen dabei zwischen 25°C (für 1h) und 180°C (für die (CO),M-Komplexe) und mußten zur Vermeidung unerwünschter Reaktionen z. T. recht genau eingehalten werden.

$$L_nM \underbrace{EMe_2 - EMe_2}_{EMe_2 - EMe_2} ML_n$$

	L _n M	E		L _n M	Е
5a	(CO)4Cr	Р	5f	(CO) ₂ Ni	Р
b	(CO)₄Mo	Р	g	(CO)4Cr	As
с	(CO)₄W	Р	h	(CO)₄Mo	As
d	Br(CO) ₃ Mn	Р	i	(CO)₄W	As
e	NO(CO)Co	Р	j	Br(CO) ₃ Mn	As
L _n N	$M_{As}^{Me_2}ML_n$		L _n I	M−EMe₂−EMe	e₂−MLn
6a:	$ML_n = Fe(CC)$)) ₃	7a:	$E = P, ML_n$	= MnCp(C(
b:	$ML_n = Fe(NG)$)) ₂	b:	E = As, ML	$n = Co(CO)_2$

In mehreren Fällen führten die Thermolysen nicht zu den gewünschten Sechsringen. So ergaben 11 und n bevorzugt die Metall-Metall-verknüpften Komplexe 6, was bei 6b erstaunt, da der Sechsring $[(NO)_2Fe - PMe_2 - PMe_2]^{1}$ bekannt ist. In vergleichbarer Weise eliminierten 1d und o beim Erhitzen E_2Me_4 unter Bildung der kettenförmigen Zweikernkomplexe 7. Eine Oligomerisierungstendenz war wieder bei der Umwandlung von 1h zu beobachten: Hauptprodukt der Thermolysen war eine sehr schwerlösliche Substanz der ungefähren Zusammensetzung $[(CO)_2Ni - PMe_2 - PMe_2]_n$. Einen gänz-

Chem. Ber. 114 (1981)

lich unerwarteten Verlauf nahm die Umwandlung von 1 m, wenn man deutlich über die zur Sechsringbildung nötige Temperatur von etwa 80 °C erhitzte. Es bildete sich dann der von uns schon beschriebene Fünfring-Komplex mit einem Mn - As - As - Mn - As-Skelett ¹⁶).

Die Sechsringverbindungen 5 kristallisieren, sind im festen Zustand luftstabil und zumeist schwerlöslich. Ihre IR-Spektren (Tab. 3) sind, abgesehen von lösungsmittelbedingten Veränderungen, denen der disubstituierten Komplexe 2 und vergleichbaren Verbindungen sehr ähnlich. Sie belegen bei oktaedrisch koordinierten Metallatomen die *cis*-Anordnung der Brückenliganden. Die ¹H-NMR-Spektren (Tab. 3) der phosphorhaltigen Sechsringe sind komplex und stellen Multipletts recht verschiedener Auflösung dar, deren Schwerpunkte in der Tabelle angegeben sind. Die arsenhaltigen Sechsringe sollten wegen ihrer Sesselform²⁾ zwei AsCH₃-Signale zeigen. Dies ist jedoch nur für 5j der Fall. Bei 5g - i machen offenbar die nachgewiesenen²⁾ raschen Umklappvorgänge alle Methylgruppen äquivalent. Die Konstitution, die aufgrund einer Strukturanalyse²⁾ für alle Sechsringkomplexe zu erwarten war, wurde zusätzlich durch ein FD-Massenspektrum von 5d belegt.

		v(CO) bzv	w. v(NO) ^{a)}		δ(EMe ₂) ^{b)}	δ(³¹ Ρ) ^d
58	1997 m	1911 st	1902 st	1886 m	1.10 ^{c)}	- 0.7
b	2012 m	1921 st	1912 st	1890 m	1.07 °)	- 19.8
c	2006 m	1914 st	1906 st	1887 m	1.20°)	- 44.7
d	2020 st	1963 st	1929 m		1.50 c) 1.17 c)	-
e	1956 st	1716 m			1.20 c) 0.95 c)	-
f	1999 st	1947 st			1.02 ^c)	- 22.6
2	1999 m	1913 st	1904 st	1885 m	1.63	
ĥ	2008 m	1920 st	1913 st	1890 m	1.62	
i	2007 m	1915 st	1908 st	1886 m	1.65	
i	2024 st	1955 m	1925 m		1.85 1.81	

Tab. 3. IR (cm⁻¹)- und NMR (ppm, int. TMS, ext. H₃PO₄)-Daten der Komplexe 5

a) 5e und f in Cyclohexan, sonst THF. - b) 5a-f in Benzol, 5g-j in Methylenchlorid. c) Multiplett, vgl. Text. - d) In THF, für 5d und e kein Signal zu beobachten ¹³.

Heterodinucleare Sechsringkomplexe

Von den vielen Möglichkeiten zur Konstruktion der Sechsringe mit verschiedenen Metallatomen untersuchten wir am ausführlichsten die schrittweise Umsetzung der Chelatliganden 2 mit Metallcarbonylen $L_nM(CO)_2$, die zwei substituierbare CO-Liganden besitzen. Hierbei sollten als Zwischenstufen Zweikernkomplexe des Typs 8 auftreten, die auch beobachtet wurden: die Verbindungen 8a – h mit genügend inerten Baueinheiten M'L_n konnten isoliert werden. Es sind zumeist niedrig schmelzende, luftempfindliche Feststoffe. In ihren Spektren sind sie den entsprechenden Ausgangskomplexen 2 ähnlich. Die ¹H-NMR-Spektren zeigen schwer interpretierbare Multipletts im Bereich von 0.6 – 1.6 ppm. Die IR-Spektren (Tab. 4) weisen die Verbindungen wieder mit Ausnahme der (CO)₄Mo-Komplexe als *cis-trans*-Isomerengemische aus. Die Aufnahme von ³¹P-NMR-Spektren wurde durch die Weiterreaktion der Komplexe während der zeitaufwendigen Messung erschwert, lieferte jedoch für die in Tab. 5 angegebenen Fälle das erwartete Spektrenmuster für vier verschiedene Phosphoratome.

		(CO)₄M PM	e ₂ –PMe e ₂ –PMe	₂—M'L 2	'n
	м	M'L _n		м	M'L _n
8a	Cr	Fe(NO)2CO	8e	Mo	Fe(NO) ₂ CO
Ъ	Cr	Co(CO) ₂ NO	f	Mo	Co(CO)2NO
c	Mo	Cr(CO)5	g	w	Fe(NO)2CO
d	Мо	W(CO)5	h	w	Co(CO)2NO

Tab. 4. IK-Daten der Komplexe o (Cyclonexan, em	Γab.	. 4.	IR-Daten	der	Kom	plexe	8 (Cy	/clo	hexan,	cm	-
---	------	------	----------	-----	-----	-------	-----	----	------	--------	----	---

-		M	l(CO) ₄ -Gru	ppe		M'L _n -Grup	ope
8a	cis trans	2001 s 1904 sst	1916 s	1908 Sch	2009 st	1773 st	1733 st
b	cis trans	2002 s 1892 sst	1917 s	1902 Sch	2030 st	1980 st	1758 st
с	cis	2024 m	1926 st	1907 sst	2066 m	1952 st	1943 sst ^{a)}
d	cis	2019 m	1927 st	1909 sst	2068 m	1953 st	1945 sst b)
e	cis	2024 m	1934 st	1915 sst	2012 st	1767 st	1726 st
f	cis	2023 st	1925 st	1906 sst	2041 st	1980 st	1759 st
g	cis trans	2021 m 1894 sst	1919 st	1902 Sch	2013 st	1763 st	1724 st
h	cis trans	2012 m 1899 sst	1921 st	1903 Sch	2032 m	1982 st	1758 st

a) Außerdem 1937 sst. - b) Außerdem 1940 sst.

Tab. 5. ³¹P-NMR-Daten ausgewählter Komplexe 8 $(L_nM' - P^1Me_2 - P^2Me_2 - M(CO)_4 - P^3Me_2 - P^4Me_2)$ (ppm, gegen ext. H₃PO₄, Hz, in THF, z. T. Feinstruktur durch weitere P-P-Kopplung)

	М	M'L _n	δ(P ¹)	δ(P ²)	$J(P^1P^2)$	δ(P ³)	δ(P ⁴)	J(P ³ P ⁴)
8 c	Мо	Cr(CO),	29.9	5.0	129	- 0.7	- 42.1	228
d	Мо	W(CO),	- 14.3	4.8	126	- 27.6	- 48.4	233
8	w	Fe(NO),CO	28.3	- 15.3	119	- 37.9	- 50.3	178
ĥ	w	Co(CO) ₂ NO	_	- 18.1	143	- 37.7	- 49.0	185

Bei erhöhten Temperaturen wurde aus den Reaktionsgemischen bzw. den Verbindungen 8 weiteres CO freigesetzt, und es bildeten sich in sehr verschiedenen Ausbeuten (s. u.) die Hetero-Sechsringkomplexe 9. Dieser Syntheseweg war sinnvoll für 9c - f und 9h - o. Bei 9a, b und g resultierten Trennprobleme durch Verunreinigung mit den homodinuclearen Verbindungen 5a, b und c. In diesen Fällen war es besser, die bifunktionellen Lewis-Basen 2a - c mit den bifunktionellen Metallcarbonyl-Derivaten (CO)₄M · Norbornadien umzusetzen, da bei den niedrigeren Reaktionstemperaturen weniger Nebenprodukte entstanden. Auf dem gleichen Weg waren auch die Me₂P – AsMe₂-

haltigen Sechsringe 9q - s aus den Lewis-Basen 2g - i zugänglich. Einen weiteren Weg zu den Sechsringkomplexen stellt schließlich die Synthese von 9p dar. Hierzu wurden nacheinander Fe(CO)₂(NO)₂, P₂Me₄, Ni(CO)₄ und P₂Me₄ miteinander umgesetzt, der Ring also "im Kreis herum" konstruiert.

		L _n M-E	inheit		M	L _n -Einheit	
9a	2009 st	1915 sst	1895 st		2021 m	1915 sst	1895 st
b	2006 st	1907 sst	1890 st		2019 m	1914 sst	1907 st
с	2011 m	1904 sst	1890 sst		2029 m	1956 st	1922 st
d	2023 m	1932 st	1912 sst		1734 st	1690 st	
e	2004 m	1919 st	1901 sst	1897 sst	1959 st	1723 st	
f	2005 m	1920 st	1903 sst	1898 sst	2005 st	1960 st	
8	2022 m	1915 sst	1895 st		2015 st	1915 sst	1895 st
ň	2022 m	1911 sst	1897 st		2034 m	1956 st	1925 st
i	2024 m	1934 st	1917 sst	1913 sst	1728 st	1686 st	
1	2020 m	1929 st	1912 sst	1908 sst	1961 st	1717 st	
k	2028 m	1926 st	1908 sst	1901 st	2014 st	1954 st	
1	2022 m	1905 sst	1892 sst		2032 m	1958 st	1919 st
m	2025 m	1924 st	1903 sst		1729 st	1688 st	
n	2024 m	1923 st	1902 sst		1960 st	1726 st	
0	2024 m	1919 st	1899 sst		2012 st	1955 st	
р	1721 st	1679 st			2009 st	1957 st	
ģ	2004 m	1925 st	1890 st		2021 m	1925 st	1890 st
r	2023 m	1924 st	1897 st		2012 m	1924 st	1897 st
S	2012 m	1923 st	1894 st		2024 m	1923 st	1894 st

Tab. 6. IR-Daten der Komplexe 9 (cm⁻¹, 9a-c, g, h, l, q-s in THF, sonst in Cyclohexan)

Tab. 7. ³¹P-NMR-Daten der Komplexe 9 (in THF, ppm, ext. H₃PO₄)

	δ(M ~ P)	δ(M' – P)	J		δ(M – P)	δ(Μ' – Ρ)	J
92	- 0.9	- 19.2	221	9 k	- 27.9	- 16.3	214
b	- 1.2	- 45.4	204	ì	- 38.4	- 8.9	180
С	6.8	- 11.0	190	m	- 44.1	14.8	173
d	- 4.1	13.3	197	n	- 45.6	-	165
e	- 3.5	-	170	0	- 49.7	- 17.0	221
f	- 6.4	- 21.0	207	p	10.0	- 17.2	216
2	- 18.4	- 45.6	209	ġ	- 7.7	-	
ň	- 11.3	- 11.3	-	ŕ	- 27.9	_	-
i	- 19.7	13.7	177	s a)	-	-	-
j	- 21.8	-	185				

a) Zersetzung während der Messung.

Die Komplexe 9 sind mäßig löslich und mit Ausnahme von 9i, j und s thermisch und oxidativ recht stabil. Ihren Konstitutionsbeweis lieferten die Massenspektren von 9e, p und q, die das Molekül-Ion und das typische CO-Abspaltungsmuster zeigen. In den IR-Spektren (Tab. 6) sind die einzelnen Baugruppen L_nM und M' L_n sehr gut auszumachen, und Überlagerungen der Banden treten nur in den Fällen ein, wo das Molekül zwei M(CO)₄-Einheiten enthält. Die ¹H-NMR-Spektren bestehen wieder aus komplizierten Multipletts im Bereich von 0.8 - 1.4 ppm, die nur in einigen Fällen (z. B. 9d und e) täuschend einfach sind und sich einer detaillierten Analyse entziehen. Informativer und wichtig zur analytischen Charakterisierung waren die ³¹P-NMR-Spektren (Tab. 7). Sie zeigen für **9a** – **p** das AA'BB'-Spinsystem, das nicht in allen Fällen aufgelöst ist¹³⁾ und deshalb für die Tabelle wie ein AB-System ausgewertet wurde. Für einen Fall, nämlich **90**, wurde eine Computer-Analyse durchgeführt, die die Werte $J_{AB} = 193$, $J_{AB'} = -26$, $J_{AA'} = -22$, $J_{BB'} = -7$ Hz ergab. Auffällig ist die gute Konsistenz der Signallagen der jeweils an eine ML_n-Einheit gebundenen P-Atome, die ein gutes Merkmal zur Identifizierung weiterer Ringsysteme dieser Art zu sein verspricht.

$$PMe_2 - PMe_2$$

$$L_nM \qquad M'L_n$$

$$PMe_2 - PMe_2$$

	L _n M	M'Ln	-	L _n M	M'L _n			L _n M	M'L _n
98	(CO) ₄ Cr	Mo(CO)4	9g	(CO) ₄ Mo	W(CO) ₄		91	(CO)4W	Mn(CO) ₃ Br
b	(CO) ₄ Cr	W(CO)4	h	(CO)₄Mo	Mn(CO) ₃	Br	m	(CO) ₄ ₩	Fe(NO)2
c	(CO) ₄ Cr	Mn(CO) ₃ Br	1	(CO)₄Mo	Fe(NO)2		n	(CO)₄W	Co(CO)NO
d	(CO)4Cr	Fe(NO)2	j	(CO)₄Mo	Co(CO)N	ю	0	(CO)₄W	Ni(CO) ₂
e	(CO)4Cr	Co(CO)NO	k	(CO) ₄ Mo	$Ni(CO)_2$		P	(NO)2Fe	Ni(CO) ₂
f	(CO) ₄ Cr	Ni(CO) ₂	•					l .	
	I				-		м	м'	
			PMe₂–A	AsMe ₂		9q	Cr	Мо	
		(CO)4M	°Me₂−A	∧sMeź	2014	r	Мо	w	
			9q-	\$		s	W.	Мо	

Wie schon erwähnt, waren die Komplexe 8 bzw. 9 nicht die einzigen Produkte der beschriebenen Reaktionen. Sie wurden in fast allen Fällen von anderen Verbindungen begleitet, die z. T. in höheren Ausbeuten als die gewünschten Komplexe anfielen. Dies waren einerseits Zweikernkomplexe des Typs $L_nM - PMe_2 - PMe_2 - M'L_n$ oder die homodinuclearen Sechsringkomplexe 5, deren Entstehung auf der bei hohen Reaktionstemperaturen deutlich werdenden Labilität und Austauschbarkeit von Liganden beruht. Andererseits ermöglichte die Bifunktionalität der Reaktionspartner stets die Bildung oligomerer anstelle zweikerniger Komplexe. Dies trat in den in Tab. 8 angegebenen Fällen merklich ein. Die sehr schwerlöslichen Oligomeren fielen als Pulver an, deren IR-Spektren erkennen ließen, daß sie dieselben Baugruppen wie die in Konkurrenz zu ihnen entstehenden Sechsringe enthalten. Sie sind wahrscheinlich keine einheitlichen Verbindungen. Ihre mit 10a - i angegebenen Zusammensetzungen wurden aus den Analysendaten erschlossen und müssen als Näherungswerte angesehen werden. Es scheint so zu sein, daß in Zwischenprodukten wie 8 nur cis-Konfiguration an den M(CO)₄-Baueinheiten die Sechsringbildung begünstigt. Die relativen Mengen der cisund trans-Isomeren und das Ausmaß der cis-trans-Isomerisierung im Reaktionsverlauf entscheiden dann über die Ausbeuten der alternativen Reaktionsprodukte. So trat mit den Mo(CO)₄-Ausgangskomplexen des Typs 2, die ausschließlich cis-konfiguriert vorliegen, praktisch keine Oligomerenbildung ein, während diese bei den nicht isomerenreinen Cr(CO)₄- und W(CO)₄-Ausgangskomplexen die Regel war.

	Ungefähre Zusammensetzung	Bei Synthese von
10 a	$P_{2}Me_{4} - W(CO)_{4} - P_{2}Me_{4}[Cr(CO)_{4} - P_{2}Me_{4} - W(CO)_{4} - P_{2}Me_{4}]_{4}$	9b
b	$P_2Me_4 - Cr(CO)_4 - P_2Me_4 - Mn(CO)_3Br - P_2Me_4 - Cr(CO)_4 - P_2Me_4 - Mn(CO)_4Br$	9c
с	$(CO)_2Ni[P_2Me_4 - Cr(CO)_4 - P_2Me_4 - Ni(CO)_3]_2$	1 e
d	$P_2Me_4 - Mo(CO)_4 - P_2Me_4 - Mn(CO)_3Br - P_2Me_4 - Mo(CO)_4 - P_2Me_4 - Mn(CO)_4Br$	9 h
e	$P_2Me_4 - W(CO)_4 - P_2Me_4 - Mn(CO)_3Br - P_2Me_4 - W(CO)_4 - P_2Me_4 - Mn(CO)_4Br$	91
ſ	$(CO)_{2}Ni[P_{2}Me_{4} - W(CO)_{4} - P_{2}Me_{4} - Ni(CO)_{3}]_{2}$	90
g	$Fe(CO)(NO)_2 - P_2Me_4 - Ni(CO)_2 - P_2Me_4 - Fe(NO)_2 - P_2Me_4 - Ni(CO)_3$	9р
h	$P_2Me_4 - W(CO)_4 - P_2Me_4[Mo(CO)_4 - P_2Me_4 - W(CO)_4 - P_2Me_4]_3$	9 g
i	$\begin{array}{l} AsMe_2PMe_2-Cr(CO)_4-PMe_2AsMe_2[Mo(CO)_4-AsMe_2PMe_2-Cr(CO)_4-PMe_2AsMe_2]_2\end{array}$	9q

Tab. 8. Oligomere Nebenprodukte 10 bei der Synthese der Sechsringkomplexe 9

Die insgesamt 29 isolierten Sechsringkomplexe 5 und 9 bestätigen die in der Einleitung ausgesprochene Ansicht, daß die bei den Metallcarbonyl-Komplexen gegebenen Aufbaumöglichkeiten leicht für diese Verbindungen auszunutzen sind. Es konnten oktaedrisch und tetraedrisch koordinierte Carbonylmetall-Baugruppen untereinander und miteinander kombiniert werden. Dazu ist zu erwarten, daß weitere Organometall-Einheiten und weitere Hauptgruppenelement-Bausteine in Sechsringe einzubauen sind. Auch von den Oligomeren, deren Zusammensetzung und Synthese hier nicht kontrollierbar waren, ist anzunehmen, daß sie bei geeigneten Darstellungsverfahren als Mitglieder der wachsenden Gruppe metallorganischer Polymerer mit anisotropen physikalischen Eigenschaften¹⁷) in Frage kommen.

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt. Wir danken Herrn Dr. K. Steinbach, Marburg, und Herrn Dr. P. Merbach, Erlangen, für die Massenspektren und Herrn Dipl.-Chem. H. Beurich für die ³¹P-NMR-Spektren.

Experimenteller Teil

Die allgemeinen Arbeitstechniken und die Meßgeräte waren wie zuvor beschrieben¹⁸). Die Ausgangskomplexe und Liganden wurden gekauft bzw. nach gängigen Literaturvorschriften dargestellt.

Darstellung der neuen Komplexe 1: Die eingesetzten Mengen der Reaktanden, die Reaktionsbedingungen und die Ausbeuten sind in Tab. 9 aufgeführt. Tab. 10 enthält die Charakterisierung der neuen Verbindungen. Die großen Buchstaben in Tab. 9 stehen für die verschiedenen Synthesevarianten:

A: Die Carbonylkomplexe wurden in einer Bestrahlungsapparatur in THF aufgelöst. Zur guten Durchmischung während der photochemischen Reaktion wurde kräftig gerührt. Bei 1j wurde im Verlauf der Reaktion zweimal Stickstoff für 2 min durchgeblasen und so das gebildete Kohlenmonoxid verdrängt. Nachdem die CO-Entwicklung zum Stillstand gekommen war, wurde die Reaktionslösung zu dem Liganden ohne Lösungsmittel getropft. Die Umsetzung der THF-Komplexe

Komplex	Ausgangs- verbindung	60	што	Reagens	60	mmol	Lösungs- mittel	'n	Reaktic Temp. (°C)	ons- Zeit (h)	Vari- ante	Ausi g	р. %
1d	CpMn(CO) ₃	3.07	15.00	Me ₂ PPMc ₂	2.20	18.00	THF	200	12-25	5	<	1.77	55
1f	BrMn(CO)5	2.45	8.95	Me ₂ PPMe ₂	1.33	10.90	Benzol	50	12	15	В	2.70	82
1g	(NO)Co(CO)3	0.52	3.00	Me2PPMe2	0.49	4.00	Petrol- ether	40 ^{a)}	12	0.75	B	0.60	75
1 h ^{b)}	Ni(CO)4	0.34	2.00	Me ₂ PPMe ₂	0.32	2.55	Petrol- ether	6	0	0.5	B	I	1
110	Cr(CO)6	6.60	30.00	Me ₂ AsAsMe ₂	3.78	18.00	THF	200	12 - 25	4.5	۲	3.47	29
1j	Mo(CO)	7.95	30.00	Me ₂ AsAsMe ₂	2.52	12.00	THF	200	12 – 25	œ	۲	3.68	58
1 k c)	w(co)	7.00	20.00	Me ₂ AsAsMe ₂	5.04	24.00	THF	200	25	4.5	۲	5.71	54
1 m	BrMn(CO) ₅	1.60	6.00	Me ₂ AsAsMe ₂	1.26	6.00	Benzol	30	25	e	B	2.60	\$
10	(NO) ₂ Fe(CO) ₂	0.51	3.00	Me _z AsAsMe ₂	0.84	4.00	Petrol- ether	4	25	6	8	0.70	8
10	(NO)Co(CO)3	0.51	2.98	Me ₂ AsAsMe ₂	0.61	2.90	Xylol	8	130-140	4	æ		()
a) Ausgangsvi siert.	erbindung und Re	eagens je	weils in 2() ml Petrolether	gelöst. –	b) Nicht	isolierbar.	- c) Vgl.	Lit. ¹¹⁾ . – '	^{d)} Nur sp	ektros	copisch	charakte

Tab. 9. Darstellung der neuen Komplexe 1

Name	Farbe Schmp. (°C)	Summenformel (Molmasse)			Analyse		
Dicarbonyl(cyclopentadienyl)- (tetramethyldiphosphan)mangan (1d)	rötlich gelb Öl	C ₁₁ H ₁₇ MnO ₂ P ₂ (298.1)	Ber. Gef.	C 44.31 C 45.68	H 5.75 H 5.65		
Bromotetracarbonyl(tetramethyl- diphosphan)mangan (11)	blutrot Öl	C ₆ H ₁₂ BrMnO4P ₂ (369.0)	Ber. Gef.	C 26.04 C 26.44	H 3.28 H 3.77	Br 21.66 Br 22.64	
Dicarbonylnitrosyl(tetramethyl- diphosphan)cobalt (1g)	dunkeirot Öl	C ₆ H ₁₂ CoNO ₃ P ₂ (267.1)	Ber. Gef.	C 26.97 C 26.03	H 4.53 H 4.23	N 5.25 N 5.49	
Tricarbonyl(tetramethyldi- phosphan)nickel (1h)	farblos Öl	C ₇ H ₁₂ NiO ₃ P ₂ (264.8)	æ				
Pentacarbonyl(tetramethyldi- arsan)chrom (1i)	gelb Öl	C ₉ H ₁₂ As ₂ CrO ₅ (402.0)	Ber. Gef.	C 26.89 C 26.98	H 3.01 H 3.08		
Pentacarbonyl(tetramethyldi- arsan)molybdän (1])	gelb Öl	C ₉ H ₁₂ As ₂ MoO ₅ (446.0)	Gef.	C 24.24 C 24.58	H 2.71 H 2.40		
Pentacarbonyl(tetramethyldi- arsan)wolfram (1k)	gelbgrún – 17	C ₉ H ₁₂ As ₂ O ₅ W (533.9)	Ber. Gef.	C 20.25 C 20.64	H 2.27 H 2.30		
Bromotetracarbonyl(tetramethyl- diarsan)mangan (1m)	blutrot Öl	C ₈ H ₁₂ A5 ₂ BrMnO ₄ (456.9)	Ber. Gef.	C 21.03 C 21.33	H 2.65 H 2.63	Br 17.49 Br 17.59	
Carbonyldinitrosyl(tetramethyl- diarsan)eisen (1n)	dunkelrot Öl	C ₅ H ₁₂ As ₂ FeN ₂ O ₃ (353.9)	Ber. Gef.	C 16.97 C 17.88	H 3.42 H 3.66	N 7.92 N 7.47	
Dicarbonylnitrosyl(tetramethyl- diarsan)cobalt (10)	dunkelrot Öl	C ₆ H ₁₂ A52C0NO3 (354.9)	a)				

Tab. 10. Charakterisierung der neuen Komplexe 1

Chem. Ber. 114 (1981)

a) Nicht analysenrein erhalten.

mit P_2Me_4 oder As_2Me_4 verlief sehr schnell. Nach 30 min konnte das Lösungsmittel i. Vak. entfernt werden. Zur Extraktion der Produkte wurde der Rückstand in 30 ml Petrolether (60 – 70 °C) 1 h bei Raumtemp. gerührt. Anschließend filtrierte man ab. Der Petrolether wurde i. Vak. entfernt und das ölige Produkt nach 12 – 16 h i. Hochvak. sauber erhalten.

B: Der Ausgangskomplex wurde im Lösungsmittel direkt mit dem Liganden umgesetzt. Nur bei 1 g und n wurde eine Lösung des jeweiligen Carbonylkomplexes langsam zum Liganden im gleichen Lösungsmittel getropft. Das Lösungsmittel wurde nach Filtrieren in den meisten Fällen bei Wasserkühlung im Stickstoffstrom verblasen (1 f, g, h, n). Die stabilere Verbindung 1 m wurde i. Hochvak. vom Lösungsmittel befreit. 1 o wurde nur als Zwischenstufe bei der Entstehung von 7 b (s. u.) spektroskopisch charakterisiert.

Darstellung der Komplexe 2 aus E_2Me_4 : Alle wichtigen Einzelheiten über die Reaktionsführung enthält Tab. 11. Die Charakterisierung der neuen Komplexe folgt in Tab. 12. Die Buchstaben A und B skizzieren Isolierung und Reinigung der Produkte.

A: Nach beendeter Reaktion wurde von Schwerlöslichem abfiltriert, und aus dem Filtrat wurden durch Entfernen des Lösungsmittels i. Vak. die Rohprodukte 2 gewonnen. Letztere waren nach 12 h i. Hochvak. von allen Verunreinigungen befreit.

Aus den schwerlöslichen Niederschlägen bei den Synthesen von 2b und c wurden durch Extraktion mit 10 ml heißem THF, folgender Chromatographie des Extraktes (10-cm-Kieselgelsäule; Laufmittel Benzol/THF (1:1)), nach Entfernen des Lösungsmittels i. Vak. und nach weiteren 12 h i. Hochvak. 0.09 g (4%) 5b bzw. 0.18 g (10%) 5c isoliert. Reinigung und Charakterisierung der schwerlöslichen Oligomeren 3b und c folgen zusammen mit 3a weiter unten.

B: Die schwerlöslichen Sechsringkomplexe 5g - i wurden abfiltriert, mit je 2 × 5 ml heißem THF, Benzol und Petrolether (60 – 70 °C) gewaschen und 12 h i. Hochvak. getrocknet (Ausbeuten: 0.23 g (13%) 5g; 0.30 g (7%) 5h; 0.08 g (5%) 5i).

Aus dem jeweiligen Filtrat wurde das ölige Produkt durch Verblasen des Lösungsmittels im Stickstoffstrom erhalten.

cis-Tetracarbonylbis(dimethylphosphan)chrom (4a): In 10 ml Benzol wurden 3.84 g (15.0 mmol) $C_7H_8Cr(CO)_4$ (C_7H_8 = Norbornadien) und 2.59 g (40.0 mmol) Me_2PH bei 75 – 80 °C 3 h im Bombenrohr erhitzt. Anschließend wurde filtriert und das Lösungsmittel i. Vak. entfernt. Das Rohprodukt löste sich in 15 ml warmem Petrolether (30 – 50 °C). Nach 6 h bei – 30 °C wurden die hellgelben Kristalle abfiltriert und i. Hochvak. getrocknet: Ausb. 3.03 g (70%), Schmp. 56 °C. – IR (Cyclohexan): 2012 m, 1924 st, 1902 sst cm⁻¹. – ¹H-NMR (CS₂): CH₃ δ = 1.50, H 4.48, J_{P-CH_3} = 5.4, J_{HH} = 6.4, J_{PH} = 321 Hz. – ³¹P-NMR: δ = –13.4.

C8H14CrO4P2 (288.1) Ber. C 33.35 H 4.90 Gef. C 33.47 H 5.09

cis-Tetracarbonylbis(dimethylarsan)molybdan (4c): Unter Rühren wurden 1.50 g (5.0 mmol) C₇H₈Mo(CO)₄ mit 1.59 g (15.0 mmol) Me₂AsH in 50 ml Petrolether (60 – 70°C) bei 0°C umgesetzt. Nach 2.5 h wurde filtriert und das Lösungsmittel i. Vak. entfernt. Der Rückstand wurde in 12 ml Benzol/Petrolether (1:5) gelöst und bei – 78°C das Rohprodukt ausgefällt. Die überstehende Lösung wurde in der Kälte abpipettiert und der bei Raumtemp. ölige Rückstand i. Vak. getrocknet: 1.80 g (86%) braunes 4c vom Schmp. 13°C. – IR (Cyclohexan): 2025 m, 1929 st, 1918 st, 1903 st cm⁻¹. – ¹H-NMR (Benzol): CH₃ δ = 0.90, H 2.87, J_{HH} = 6.0 Hz.

C₈H₁₄As₂MoO₄ (420.0) Ber. C 22.88 H 3.36 Gef. C 23.60 H 3.55

Komplexe 2 des Liganden $Me_2P - AsMe_2$: Die Charakterisierung dieser Komplexe findet sich in Tab. 12.

1354

			Tab. 11. Di	arstellung der Kom	plexe 2 au:	s E ₂ Me ₄ (C	$_{7}H_{8} = N_{1}$	orbornadien)				
Komplex	Ausgangs-			Reagens			Petrol- ether	Reaktio Temp.	ns- Zeit	Vari-	Aus	ė.
	verbindung	80	mmol)	80	mmol	Ē	(,c)	સિ	ante	80	9/0
28	C ₇ H ₈ Cr(CO) ₄	1.05	4.10	Me ₂ PPMe ₂	1.01	8.30	80	80	-	¥	1.33	80
2 b	C ₇ H ₈ M ₀ (CO) ₄	1.80	6.00	Me ₂ PPMe ₂	1.83	15.00	75	- 20 - 25	4.5	•	1.30	48
2с	C ₇ H ₈ W(CO) ₄	1.50	3.87	Me ₂ PPMe ₂	1.22	10.00	80	80	1	۲	1.02	49
2 d	C ₇ H ₈ Cr(CO) ₄	0.77	3.00	Me ₂ AsAsMe ₂	1.30	6.20	50	60 - 70	1	B	0.78	45
2e	C ₇ H ₈ M ₆ (CO) ₄	1.80	6.00	Me ₂ AsAsMe ₂	3.15	15.00	75	0 – 25	9	B	1.18	32
2f	C ₇ H ₈ W(CO) ₄	0.75	1.93	Me ₂ AsAsMe ₂	0.84	4.00	50	60 70	1	B	0.57	41
				Tab. 12. Chara	ıkterisierur	ng der Kon	iplexe 2					
	Name			Farbe	°S,	°C)	Summ (Mo	lenformel Imasse)			Anal	yse
Tetraca	rbonylbis(tetrameth phan)chrom (2a)	-iblyı		hellgelb	Y	45	C ₁₂ H ₂₄ (408.	CrO4P4 2)	HO	ker. (C 35.31 C 35.23	H 5.93 H 5.84
Tetraca phosi	urbonylbis(tetramet) phan)molybdån (2b	-ibldi-		gelb	1.1	31	C ₁₂ H ₂₄ (452.	MoO4P4 2)	щО	Ber.	C 31.88 C 32.40	H 5.35 H 5.43
Tetraca	rrbonylbis(tetramet) phan)wolfram (2c)	-iply		gelb	-	18	C ₁₂ H ₂₄ (540.	04P4W 1)		Ber.	C 26.69 C 26.45	H 4.48 H 4.50
Tetraca arsan	urbonylbis(tetramet) 1)chrom (2 d)	-ibly		orangegelb	-	19	C ₁₂ H ₂₄ (584.	As4CrO4 0)		Gef.	C 24.68 C 26.67	H 4.14 H 4.47
Tetraca arsan	ırbonylbis(tetramet) 1)molybdän (2e)	-iblyı		gelb	~	õ	C ₁₂ H ₂₄ (628.	As4MoO4 0)		Gef.	C 22.95 C 24.67	H 3.85 H 3.66
Tetraca arsan	urbonylbis(tetramet) 1)wolfram (2f)	-iblyı		gelb		- 15	C ₁₂ H ₂₄ (715.	As4O4W 9)		Gef.	C 20.18 C 25.12	H 3.38 H 3.89
Tetraca arsin	rrbonylbis[(dimethy o)dimethylphospha	l- n-P]chroi	n (2g)	gelbbraun	-	õ	C ₁₂ H ₂₄ (496.	As ₂ CrO ₄ P ₂ 1)		Gef.	C 29.05 C 28.98	H 4.88 H 4.84
Tetraca meth	urbonylbis[(dimethy ylphosphan-P]moly	larsino)di /bdän (2h		braun	-	õ	C ₁₂ H ₂₄ (540.	As ₂ MoO ₄ P ₂ .1)		Ber.	C 26.69 C 27.19	H 4.48 H 4.54
Tetraca	ırbonylbis[(dimethy ylphosphan-As]mo	larsino)di Iybdän (2	. .	orangerot	-	Ö	C ₁₂ H ₂₄ (540.	As2MoO4P2 1)		Ber.	C 26.69 C 28.61	H 4.48 H 4.75

2g: In 20 ml Diethylether wurden 1.29 g (4.48 mmol) 4a gelöst. Bei -25 °C wurden innerhalb von 15 min 9.0 mmol LiCH₃ in Ether zugetropft. Nach Erwärmen auf 0 °C wurde erneut auf -25 °C gekühlt, und 1.26 g (8.96 mmol) Me₂AsCl in 20 ml Ether wurden zugetropft. Es wurde auf Raumtemp. erwärmt, filtriert, das Lösungsmittel i. Vak. entfernt und der Rückstand mit 20 ml Petrolether (60-70 °C) behandelt. Die unlöslichen Bestandteile wurden wiederum abfiltriert, die Lösung wurde i. Vak. eingeengt und der ölige Rückstand in 12 ml Benzol/Petrolether (1:5) gelöst. Das Produkt wurde bei -78 °C ausgefroren und nach Abpipettieren der überstehenden Lösung zweimal mit 2 ml Petrolether (30 - 50 °C) in der Kälte gewaschen. Nach 10 h i. Hochvak. wurden 1.50 g (68%) 2g als gelbbraunes Öl isoliert.

2h: Wie 2g aus 1.03 g (3.10 mmol) 4b, 0.15 g (6.5 mmol) CH₃Li in 25 ml Ether und 0.91 g (6.50 mmol) Me₂AsCl. Nach Trocknen i. Hochvak. Ausb. 1.12 g (67%) als braunes Öl.

21: Wie 2g aus 1.35 g (3.20 mmol) 4c, 0.15 g (6.5 mmol) CH₃Li in 25 ml Ether und 0.63 g (6.50 mmol) Me₂PCl. Ausb. 0.73 g (42%) orangerotes Öl, das nicht völlig analysenrein war.

Isolierung der Oligomeren 3: Diese Oligomeren fielen bei den Synthesen von 2a, b und c (s. dort) als schwerlösliche Produkte an. Sie wurden abfiltriert und zweimal mit 5 ml heißem THF, zweimal mit 5 ml heißem Benzol und zweimal mit 5 ml heißem Petrolether (60 – 70 °C) gewaschen. Nach 12 h i. Hochvak. verblieben die Verbindungen 3 als Pulver.

3a (entstanden bei der Synthese von 2a): 0.26 g (19%), gelb, Schmp. 262 °C (Zers.). Das IR-Spektrum in KBr läßt Banden der Baueinheiten *cis*-Cr(CO)₄ (1998 m, 1927 st, 1899 sst cm⁻¹) und *trans*-Cr(CO)₄ (1859 sst cm⁻¹) erkennen.

C44H72Cr5O20P12 (1552.7) Ber. C 34.04 H 4.67 Cr 16.74 Gef. C 33.64 H 5.00 Cr 17.34

3b (entstanden bei der Synthese von 2b): 0.64 g (30%), hellgelb, Schmp. 217 °C (Zers.). Das IR-Spektrum in KBr läßt Banden der Baueinheiten *cis*-Mo(CO)₄ (2016 m, 1924 st, 1890 sst cm⁻¹) und *trans*-Mo(CO)₄ (1871 sst cm⁻¹) erkennen.

C28H48M03O12P8 (1112.3) Ber. C 30.24 H 4.35 Mo 25.88 Gef. C 30.26 H 4.43 Mo 25.40

3 c (entstanden bei der Synthese von 2 c): 0.50 g (28%), gelb, Schmp. 139°C. Das IR-Spektrum in KBr laßt Banden der Baueinheiten *cis*-W(CO)₄ (2010 m, 1903 st, 1884 sst cm⁻¹) und *trans*-W(CO)₄ (1856 sst cm⁻¹) erkennen.

C₅₀H₉₆O₂₈P₁₆W₇ (3047.9) Ber. C 23.64 H 3.18 W 42.22 Gef. C 23.30 H 3.11 W 41.92

Thermolyse der Komplexe 1: Die Umsetzungen wurden außer bei 1h und o im Einschlußrohr durchgeführt. Die Details aller Thermolysereaktionen enthält Tab. 13, die Charakterisierung der neuen Komplexverbindungen Tab. 14. Die folgenden Großbuchstaben stehen für die Varianten bei der Aufarbeitung:

A: Nach Abbruch der Thermolyse wurde der Inhalt des Reaktionsrohres durch mehrmaliges Waschen mit heißem Benzol extrahiert, die Extrakte wurden vereinigt, filtriert und i. Vak. vom Lösungsmittel befreit. Der Rückstand wurde je zweimal mit 3 ml heißem Benzol und Petrolether $(60 - 70 \,^{\circ}\text{C})$ gewaschen und i. Hochvak. getrocknet.

B: Nach Beendigung der Reaktion wurde der schwerlösliche Niederschlag abfiltriert. Aus diesem wurde mit 20 ml heißem THF der Sechsringkomplex 5f extrahiert und vom unlöslichen, oligomeren [Ni(CO)₂P₂Me₄]_x durch Filtrieren abgetrennt. Anschließend wurde 5f i. Vak. vom Lösungsmittel befreit und der Rückstand in 4 ml heißer Benzol/Petrolether (60 – 70 °C)-Lösung (1:3) aufgenommen. Nach Kristallisation bei – 30 °C wurde 5f abfiltriert und 12 h i. Hochvak. getrocknet. Das oligomere Produkt [Ni(CO)₂P₂Me₄]_x wurde je zweimal mit 5 ml heißem THF, Benzol und schließlich Petrolether (60 – 70 °C) gewaschen und 12 h i. Hochvak. getrocknet.

C: Nach Beendigung der Reaktion wurde der Inhalt des Einschlußrohres mit 20 ml heißem Benzol extrahiert, sofort filtriert und das Lösungsmittel i. Vak. entfernt. Das Produkt wurde in möglichst wenig heißem Benzol gelöst und zu der heißen Lösung die dreifache Menge Petrolether getropft. Es wurde bei -30° C auskristallisiert und 8 h i. Hochvak. getrocknet.

D: Die Reaktionslösung wurde filtriert und das Xylol i. Vak. entfernt. Das Produkt wurde in 4 ml Benzol gelöst und über eine 2 cm \times 75 cm-Kieselgel-Säule (Laufmittel Benzol/Petrolether (60 - 70 °C) = 1:1) chromatographiert. Dabei wurden nacheinander 7b und 10 eluiert. 7b wurde i. Vak. vom Lösungsmittel befreit, aus Petrolether (60 - 70 °C)/Benzol (3:1) umkristallisiert und 6 h i. Hochvak. getrocknet. 10 zersetzte sich größtenteils während der Chromatographie und wurde nur spektroskopisch charakterisiert.

Kom	plex 1		Solvens	Reaktio	ons- Zeit	Va-	Produkt	Aus	b .
Nr.	g	mmol	ml	(°C)	(h)	riante	Tiodaw	g	70
18	0.90	2.86	B 4	180	8	A	5a	0.59	72
1 b	0.95	2.65	B 4	180	8.5	Α	5 b	0.69	79
1c	1.35	3.03	B 4	180	8	Α	5c	0.47	37
1 d	0.83	2.78	B 4	180	6	Α	7 a ¹⁹⁾	0.11	17
1f	0.80	2.17	B 4	80 - 90	5	Α	5 d	0.25	34
12	0.70	2.62	B 5	135	5	Α	5e	0.17	27
1 h a)	0.98	3.69	B 20	12 - 25	4.5	В	5 f ^b)	0.12	14
11	0.70	1.74	B 4	180	5	Α	5g	0.13	20
11	0.89	2.00	B 4	180	6.5	Α	5 h	0.08	10
1 k	0.83	1.55	B 4	170 180	10	Α	5i	0.07	9
11	1.01	2.67	B 3	145	6	С	6 a 20)	0.22	34
1 m	0.88	1.92	B 5	80 - 90	5	Α	5 j	0.45	56
1n	0.60	1.70	B 6	140	5	С	6Ď ¹⁾	0.27	36
1 o ª)	1.03	2.90	x 20	130 - 140	4	Ď	7 b	0.05	3

Tab. 13. Umsetzungen der Komplexe 1 (B = Benzol, X = Xylol)

a) In situ gebildet. – b) Weiteres Produkt: 0.60 g (69%) [Ni(CO)₂P₂Me₄]_x.

Isolierung der Zwischenstufen 8: Die Komplexe 2a, b und c wurden mit Metallcarbonylkomplexen umgesetzt. Details bezüglich Darstellung und Charakterisierung enthalten Tab. 15 bzw. 16. Zwei Darstellungsvarianten kamen zur Anwendung:

A: Die Ausgangskomplexe wurden bei Raumtemperatur mit $(NO)_2Fe(CO)_2$ bzw. $(NO)Co(CO)_3$ umgesetzt. Nach Beendigung der CO-Abspaltung wurde filtriert. Bei **8a** und **b** wurde dann das Lösungsmittel i. Vak. entfernt und der Rückstand zweimal mit 1 ml Petrolether (60 – 70 °C) gewaschen. **8a** und **b** kristallisierten aus 2 ml Petrolether (60 – 70 °C) bei – 30 °C aus. Im Fall der übrigen Komplexe (**8e** – **h**) wurde das Lösungsmittel im Stickstoffstrom verblasen, und die Produkte wurden wie oben bei – 30 °C kristallisiert.

B: Zu dem Komplex 2b wurden THF-Lösungen der Reaktionspartner getropft. Nach Reaktionsende wurde filtriert und das Lösungsmittel i. Vak. entfernt. Der Rückstand wurde in möglichst wenig heißem Benzol gelöst. Zur heißen Lösung wurde langsam die dreifache Menge Petrolether (60 – 70 °C) getropft. Nach 2 h bei – 30 °C kristallisierten 8c bzw. d aus.

Darstellung der Sechsringkomplexe 9 (außer 9p): Einzelheiten über die Darstellung und Charakterisierung der Komplexe sind in Tab. 17 und 18 zusammengefaßt. Die folgenden Großbuchstaben kennzeichnen die verschiedenen Methoden der Reaktionsführung und Isolierung:

A: Die Komplexe 8 wurden im Einschlußrohr in Gegenwart einiger ml Lösungsmittel erhitzt. Die Reaktionsprodukte wurden in Benzol aufgenommen und über eine 2 cm \times 90 cm-Kieselgel-Säule chromatographiert, Laufmittel von Benzol/Petrolether (1:1) über Benzol bis zu

Хате	Farbe	Schmp. (°C)	Summenformel (Molmasse)			Analyse		
Bis(µ-tetramethyldiphosphan)- bis(tetracarbonylchrom) (5a)	gelb	278 (Zers.)	C ₁₆ H ₂₄ Cr ₂ O ₈ P ₄ (572.3)	Ber. Gef. C	33.58 32.91	H 4.23 H 4.18	చర	18.17
Bis(µ-tetramethyldiphosphan)- bis(tetracarbonylmolybdän) (5b)	ocker	256 (Zers.)	C ₁₆ H ₂₄ Mo ₂ O ₈ P ₄ (660.1)	Ber. C Gef. C	29.11 29.40	H 3.67 H 3.77	о W W	29.35
Bis(μ-tetramethyldiphosphan)- bis(tetracarbonylwolfram) (5 c)	heilgelb	269 (Zers.)	C ₁₆ H ₂₄ O ₈ P ₄ W ₂ (836.0)	Ber. C Gef. C	22.99	H 2.89 H 3.23	33	8.2
Bis(u-tetramethyldiphosphan)- bis(bromotricarbonylmangan) (5d)	gelborange	185 (Zers.)	C ₁₄ H ₂₄ Br ₂ Mn ₂ O ₆ P ₄ (681.9)	Ber. C Gef. C	24.66	H 3.55 H 3.81	Ĕ Ĕ	23.15
Bis(u-tetramethyldiphosphan)- bis(carbonylnitrosylcobalt) (5e)	weinrot	259 (Zers.)	C ₁₀ H ₂₄ Co ₂ N ₂ O ₄ P ₄ (478.1)	Ber. C Gef. C	25.12 24.99	H 5.06 H 5.20	zz	5.86 5.81
Bis(u-tetracarbonyldiphosphan)- bis(dicarbonylnickel) (5f)	farblos	198 (Zers.)	C ₁₂ H ₂₄ Ni ₂ O ₄ P ₄ (473.6)	Ber. C Gef. C	30.43 30.40	H 5.11 H 5.34	ΖŻ	24.79 24.88
Oligo[dicarbonyl(tetramethyl- diphosphan)nickel] ^{a)}	farblos	> 200 (Zers.)	[C ₆ H ₁₂ NiO ₂ P ₂] _x (236.8 • x)	Ber. C Gef. C	30.43 30.18	H 5.11 H 4.56	ΖŻ	24.79 24.26
Bis(µ-tetramethyldiarsan)- bis(tetracarbonylchrom) (5g)	gelb	244 (Zers.)	C ₁₆ H ₂₄ As ₄ Cr ₂ O ₈ (748.0)	Ber. C Gef. C	25.65 25.79	H 3.23 H 3.26	చర	13.90
Bis(µ-tetramethyldiarsan)- bis(tetracarbonylmolybdän) (5h)	rötlichgelb	196 (Zers.)	C ₁₆ H ₂₄ As ₄ Mo ₂ O ₈ (835.9)	Ber. C Gef. C	22.99 23.00	H 2.89 H 2.81	мñ	22.95 22.70
Bis(µ-tetramethyldiarsan)- bis(tetracarbonylwolfram) (51)	gelb	279 (Zers.)	C ₁₆ H ₂₄ As ₄ O ₈ W ₂ (1011.8)	Ber. C Gef. C	18.99 18.90	H 2.39 H 2.38	33	36.34 36.57
Bis(µ-tetramethyldiarsan)- bis(bromotricarbonylmangan) (5j)	gelb	201 (Zers.)	C ₁₄ H ₂₄ As ₄ Br ₂ Mn ₂ O ₆ (885.6)	Ber. C Gef. C	18.99 19.62	H 2.73 H 2.79	Br Br	18.05 18.18
μ-Tetramethyldiarsanbis- (dicarbonylnitrosylcobalt) (7b) ^{b.c)}	dunkelbraun	46	C ₈ H ₁₂ As ₂ Co ₂ N ₂ O ₆ (499.1)	Ber. C Gef. C	19.25 19.28	H 2.42 H 2.73	zz	5.61 5.87
^{a)} IR-Spektrum (KBr, v(CO)): (CO) ₂ Ni-Bai trum (Cyclohexan, v(CO) und v(NO)): 2034	ueinheiten: 1980 ssi m, 1987 st, 1766 st	t, 1911 sst cm cm ⁻¹ c) ¹ H	 ¹; (CO)₃Ni-Endgruppen: NMR-Spektrum (Benzol, in 	2069 s, 199 t. TMS): 8(A	0 Sch SMe2)	cm ⁻¹ = 0.93.	II (q	R-Spek-

Tab. 14. Charakterisierung der neuen Thermolyseprodukte

Kom- plex	Au ver	sgangs- bindung g mmol)	Reagens	g (mmol)	Solvens (mmol)	Reakt Temp. (°C)	tions- Zeit (h)	Vari- ante	Ausb. g (%)
8a	2 a	1.72 (3.11)	(NO) ₂ Fe(CO) ₂	0.53 (3.11)	Benzol (40)	25	17	A	1.42 (83)
8 b	2 a	1.08 (2.64)	(NO)Co(CO)3	0.46 (2.66)	Benzol (30)	25	15	Α	1.43 (98)
8 c	2 b	0.86 (1.90)	THFCr(CO)5	0.50 (1.90)	THF (80)	25	1	В	1.22 (100)
8 d	2 b	0.99 (2.19)	THFW(CO)5	0.87 (2.19)	THF (85)	25	1	В	1.06 (62)
8 e	2 b	1.10 (2.43	(NO) ₂ Fe(CO) ₂	0.42 (2.43)	Petrolether (20)	25	18	Α	1.28 (88)
18	2 b	0.71 (1.57)	(NO)Co(CO)3	0.27 (1.57)	Benzol (20)	25	5	Α	0.93 (99)
8 g	2 c	0.95 (1.76)	$(NO)_2Fe(CO)_2$	0.30 (1.76)	Petrolether (40)	25	16	Α	0.87 (72)
8 h	2 c	0.74 (1.37)	(NO)Co(CO) ₃	0.24 (1.37)	Petrolether (25)	25	8	Α	0.50 (53)

Tab. 15. Darstellung der Zwischenstufen 8

Benzol/THF (1:1). Die auf diese Weise abgetrennten Nebenprodukte, die spektroskopisch charakterisiert wurden, sind in Tab. 17 angegeben. Die erhaltenen Komplexe 9 wurden aus Benzol/ Petrolether bei -30 °C kristallisiert.

B: Die Reaktionen erforderten das Erhitzen der Komponenten in Lösung. Die dabei auch gebildeten oligomeren Produkte 10 wurden abfiltriert, je zweimal mit 2 ml heißem THF, Benzol und Petrolether gewaschen und 12 h i. Hochvak. getrocknet. Nach Einengen des Filtrats zur Trockne hinterblieben die rohen Komplexe 9, die aus Benzol/Petrolether bei – 30 °C kristallisiert wurden.

C: Nach der Umsetzung bei mäßiger Temp. wurde filtriert und das Filtrat wie unter B aufgearbeitet.

D: Nach der Umsetzung bei mäßiger Temp. wurde das oligomere Produkt 10 wie unter B erhalten. Das Filtrat mit dem Komplex 9 wurde zur Trockne eingeengt und dann über eine 1 cm \times 50 cm-Kieselgel-Säule mit Benzol/Petrolether (2:1) chromatographiert. Aus dem Eluat wurde der Komplex 9 wie unter B kristallisiert.

E: Nach der Reaktion wurde das Lösungsmittel i. Vak. entfernt und durch 10 ml heißes THF ersetzt. Danach wurde die Verbindung 10 wie unter B isoliert. Das verbleibende Filtrat wurde mit Benzol/THF über eine 2 cm \times 10 cm-Kieselgel-Schicht filtriert und aus dem Eluat der Komplex 9 wie unter B kristallisiert.

F: Es wurde wie unter E, jedoch ohne die Abtrennung einer oligomeren Verbindung, aufgearbeitet.

G: Die Reaktionslösung wurde noch warm filtriert und dann wie unter B aufgearbeitet.

H: Nach Aufarbeitung wie unter G verblieb ein unreiner Komplex 9. Dieser wurde noch einmal 2 h in Heptan/Benzol (2:1) im Einschlußrohr auf 120 °C erhitzt und dann aus dieser Lösung bei Raumtemp. auskristallisieren gelassen.

Name	Farbe	Schmp. (°C)	Summenformel (Molmasse)			Analyse		
Tetracarbonyl [carbonyldinitrosyl- µ-(tetramethyldiphosphan)-eisen]- (tetramethyldiphosphan)chrom (8a)	rotbraun	120 (Zers.)	C ₁₃ H ₂₄ CrFeN ₂ O,P ₄ (552.1)	Ber. Gef.	C 28.28 C 27.93	H 4.38 H 4.38	zz	5.07 5.59
Tetracarbonyl[dicarbonylnitrosyl- µ-{tetramethyldiphosphan}-cobait]- (tetramethyldiphosphan)chrom (8 b)	rotbraun	150 (Zers.)	C ₁₄ H ₂₄ CoCrNO,P ₄ (553.2)	Ber. Gef.	C 30.40 C 30.27	H 4.37 H 4.71	zz	2.53 2.13
Tetracarbonyl(pentacarbonyl-µ- (tetramethyldiphosphan)-chrom](tetra- methyldiphosphan)molybdän (8c)	heligelb	133 (Zers.)	C ₁₇ H ₂₄ CrMoO ₉ P ₄ (644.2)	Ber. Gef.	C 31.70 C 32.24	H 3.75 H 3.92	చిచి	8.07 7.67
Pentacarbonyl(tetracarbonyl-µ-(tetra- methyldiphosphan)-(tetramethyl- diphosphan)molybdån]wolfram (8d)	hellgelb	22	C ₁₇ H ₂₄ MoO ₉ P ₄ W (776.1)	Ber. Gef.	C 26.31 C 26.90	H 3.12 H 3.31	Mo Mo	12.36 12.84
Tetracarbonyl[carbonyldinitrosyl- µ-{tetramethyldiphosphan}-eisen]- (tetramethyldiphosphan)molybdån (8e)	rotbraun	2	C ₁₃ H ₂₄ FeMoN ₂ O7P4 (596.0)	Ber. Gef.	C 26.20 C 26.14	H 4.06 H 4.27	zz	4.70 4.65
Tetracarbonyl dicarbonylnitrosyl- u-{tetramethyldiphosphan}-cobalt]- (tetramethyldiphosphan)molybdån (8f)	rotorange	47	C ₁₄ H ₂₄ CoMoNO ₇ P ₄ (597.1)	Ber. Gef.	C 28.16 C 28.71	H 4.05 H 4.36	zz	2.35 1.95
Tetracarbonyl[carbonyldinitrosyl- µ-(tetramethyldiphosphan)-eisen]- (tetramethyldiphosphan)wolfram (8g)	dunkelrot	4	C ₁₃ H ₂₄ FeN ₂ O ₇ P ₄ W (683.9)	Ber. Gef.	C 22.83 C 22.95	H 3.54 H 3.71	zz	4.10 3.87
Tetracarbonyl/dicarbonylnitrosyl- µ-(tetramethyldiphosphan)-cobalt]- (tetramethyldiphosphan)wolfram (8h)	orangerot	46	C ₁₄ H ₂₄ CoNO ₇ P ₄ W (685.0)	Ber. Gef.	C 24.55 C 25.07	H 3.53 H 3.90	zz	2.05 1.55

|--|

Chem. Ber. 114 (1981)

Name	Farbe	Schmp. (°C)	Summenformel (Molmasse)			Analyse		
Tetracarbony/(tetracarbonylchrom)-bis- (μ-tetramethyldiphosphan)- molybdán (9a)	hellgelb	258 (Zers.)	C ₁₆ H ₂₄ CrMoO ₈ P ₄ (616.2)	Ber. Gef.	C 31.19 C 30.53	H 3.93 H 3.90	Mo Mo	15.57 15.67
Tetracarbonyl(tetracarbonylchrom)-bis- (u-tetramethyldiphosphan)- wolfram (9b)	gelb	277 (Zers.)	C ₁₆ H ₂₄ CrO ₈ P ₄ W (704.1)	Ber. Gef.	C 27.29 C 26.94	H 3.44 H 3.53	33	26.11 26.23
(Bromotricarbonylmangan)tetracarbonyl- bis(µ-tetramethyldiphosphan)-chrom (9 c)	gelb	279 (Zers.)	C ₁₅ H ₂₄ BrCrMnO ₇ P ₄ (627.1)	Ber. Gef.	C 28.73 C 28.85	H 3.86 H 3.64	ъ В	12.74 12.73
Tetracarbonyl(dinitrosyleisen)-bis(µ-tetra- methyldiphosphan)-chrom (9d)	hellbraun	241 (Zers.)	C ₁₂ H ₂₄ CrFeN ₂ O ₆ P ₄ (524.1)	Ber. Gef.	C 27.50 C 27.79	H 4.62 H 4.78	zz	5.35 4.84
Tetracarbonyl(carbonylnitrosylcobalt)-bis- (µ-tetramethyldiphosphan)-chrom (9e)	orangebraun	223 (Zers.)	C ₁₃ H ₂₄ CoCrNO ₆ P ₄ (525.2)	Ber. Gef.	C 29.73 C 29.17	H 4.61 H 4.68	zz	2.67 1.99
Tetracarbonyl(dicarbonylnickel)-bis- (µ-tetramethyldiphosphan)-chrom (9f)	heligelb	186 (Zers.)	C ₁₄ H ₂₄ CrNiO ₆ P ₄ (522.9)	Ber. Gef.	C 32.16 C 31.51	H 4.63 H 4.77	zz	11.23 10.83
Tetracarbonyl(tetracarbonylmolybdän)- bis(µ-tetramethyldiphosphan)- wolfram (9g)	ocker	247 (Zers.)	С ₁₆ Н ₂₄ МоО ₈ Р ₄ W (748.1)	Ber. Gef.	C 25.69 C 25.23	H 3.23 H 3.18	Μο Μο	12.83 13.16
(Bromotricarbonylmangan)tetracarbonyl- bis(µ-tetramethyldiphosphan)- molybdän (9h)	gelb	267 (Zers.)	C ₁₅ H ₂₄ BrMnMoO ₇ P ₄ (671.0)	Ber. Gef.	C 26.85 C 27.27	H 3.61 H 3.51	пп	8.19 8.07
Tetracarbonyl(dinitrosyleisen)-bis- (µ-tetramethyldiphosphan)- molybdän (91)	kupferrot (metallisch glänzend)	257 (Zers.)	C ₁₂ H ₂₄ FeMoN2O6P4 (568.0)	Ber. Gef:	C 25.37 C 25.66	H 4.26 H 4.32	zz	4.93 5.00
Tetracarbonyl(carbonylnitrosylcobalt)-bis- (u-tetramethyldiphosphan)-molybdän (9j)	orangebraun	236 (Zers.)	C ₁₃ H34CoMoNO6P4 (569.1)	Ber. Gef.	C 27.44 C 28.13	H 4.25 H 4.17	ZZ	2.46 1.99

Tab. 18. Charakterisierung der Komplexe 9

в)
un
sela
ort
8
=
Tab

Name	Farbe	Schmp. (°C)	Summenformel (Moimasse)			Analyse	4.	
Tetracarbonyl(dicarbonylnickel)-bis(μ- tetramethyldiphosphan)-molybdän (9k)	gelb	184 (Zers.)	C ₁₄ H ₂₄ MoNiO ₆ P ₄ (550.9)	Ber. Gef.	C 30.52 C 30.31	H 4.39 H 4.31	źź	10.66 10.74
(Bromotricarbonylmangan)letracarbonyl- bis(µ-tetramethyldiphosphan)- wolfram (91)	gelb	261 (Zers.)	C ₁₅ H ₂₄ BrMnO ₇ P ₄ W (758.9)	Ber. Gef.	C 23.74 C 24.05	H 3.19 H 3.19	ធ្ម	10.53 10.63
Tetracarbonyl(dinitrosyleisen)-bis(μ- tetramethyldiphosphan)- wolfram (9 m)	weinrot (metallisch glånzend	264 (Zers.)	C ₁₂ H ₂₄ FeN ₂ O ₆ P ₄ W (655.9)	Ber. Gef.	C 21.97 C 22.20	H 3.69 H 3.72	zz	4.27 4.26
Tetracarbonyl(carbonylnitrosylcobalt)- bis(u-tetramethyldiphosphan)- wolfram (9n)	orange	253 (Zers.)	C ₁₃ H ₂₄ CoNO ₆ P ₄ W .(657.0)	Ber. Gef.	C 23.77 C 24.39	H 3.68 H 3.63	zz	2.13 2.09
Tetracarbonyl(dicarbonylnickel)-bis(μ- tetramethyldiphosphan)-wolfram (90)	heligelb	183 (Zers.)	C ₁₄ H ₂₄ NiO ₆ P ₄ W (654.8)	Ber. Gef.	C 25.68 C 25.71	H 3.69 H 3.75	ΖŻ	8.97 9.34
(Dicarbonylnickel)dinitrosyl-bis(µ-tetra- methyldiphosphan)-eisen (9 p)	schwarz	274 (Zers.)	C ₁₀ H ₂₄ FeNiO ₄ P ₄ (474.8) (osmometr. 452)	Ber. Gef.	C 25.16 C 25.30	H 5.18 H 5.10	zz	6.05 5.90
Tetracarbonyl-bis[µ(dimethylarsino)- phosphan-P → Cr, As → Mo]-(tetra- carbonylchrom)molybdän (9q)	gelb	238 (Zers.)	C ₁₆ H ₂₄ As ₂ CrMoO ₈ P ₂ (704.1) (osmometr. 807)	Ber. Gef.	C 27.29 C 28.06	H 3.44 H 3.32	Mo Mo	13.63 13.27
Tetracarbonyl-bis[μ {dimethylarsino}- phosphan- $P \rightarrow Mo$, $As \rightarrow W$]-(tetra- carbonylmolybdán)wolfram (9r)		285 – 287 (Zers.)	C ₁₆ H ₂₄ As ₂ MoO ₈ P ₂ W (836.0)	Ber. Gef.	C 22.99 C 23.44	H 2.89 H 3.09	щ	11.48 11.54
Tetracarbonyl-bis[μ -(dimethylarsino)- phosphan- $P \rightarrow W$, $As \rightarrow Mo$]-(tetra- carbonylmolybdän)wolfram (9s)	gelb	253 – 255 (Zers.)	C ₁₆ H ₂₄ As ₂ MoO ₈ P ₂ W (836.0)	Ber. Gef.	C 22.99 C 23.26	Н 2.89 Н 3.06	мо Мо	11.48 11.02

Oligo- meres	v(CO) bzw. v(NO) mit Zuordnungen						
10 a	<i>trans-</i> (CO) ₄ W: 1866 sst; <i>cis-</i> (CO) ₄ W: 2019 s 1894 st; <i>trans-</i> (CO) ₄ Cr: 1866 sst; <i>cis-</i> (CO) ₄ Cr: 2005 s 1844 st						
b	<i>trans-</i> (CO) ₄ Cr: 1865 sst; <i>mer-trans-</i> Br(CO) ₃ Mn: 2031 s 1944 st 1877 m; Br(CO) ₄ Mn: 2089 s 2031 m 2014 m						
с	trans-(CO) ₄ Cr: 1862 sst; (CO) ₂ Ni: 1997 st 1939 st; (CO) ₃ Ni: 2071 s 1977 st						
d	trans-(CO) ₄ Mo: 1886 sst; cis-(CO) ₄ Mo: 2019 m 1924 Sch 1906 Sch; mer-trans-Br(CO) ₃ Mn: 2036 s 1950 st 1906 Sch; Br(CO) ₄ Mn: 2092 s 2019 m						
e	<i>trans</i> -(CO) ₄ W: 1874 sst; <i>mer-trans</i> -Br(CO) ₃ Mn: 2035 s 1949 st 1900 Sch; Br(CO) ₄ Mn: 2091 s 2035 m 2019 m						
ſ	<i>trans</i> -(CO) ₄ W: 1871 sst; <i>cis</i> -(CO) ₄ W: 2018 m 1910 Sch 1894 Sch; (CO) ₂ Ni: 1997 st 1949 st; (CO) ₃ Ni: 2074 s 1997 st						
g	(CO)(NO) ₂ Fe: 2000 st 1754 st 1700 st; (NO) ₂ Fe: 1700 st 1652 st; (CO) ₃ Ni: 2065 s 1987 m; (CO) ₂ Ni: 1987 st 1918 st						
h	<i>trans-</i> (CO) ₄ W: 1875 sst; <i>cis-</i> (CO) ₄ W: 2015 m 1904 st; <i>trans-</i> (CO) ₄ Mo: 1875 sst; <i>cis-</i> (CO) ₄ Mo: 2021 m 1904 st						
i	<i>trans-</i> (CO) ₄ Mo: 1870 sst; <i>cis-</i> (CO) ₄ Mo: 2019 m 1898 sst; <i>trans-</i> (CO) ₄ Cr: 1870 sst; <i>cis-</i> (CO) ₄ Cr: 2004 m 1898 sst						

Tab. 19. IR-Spektren der Oligomeren 10 (KBr, cm⁻¹)

Tab. 20. Charakterisierung der Oligomeren 10

Oligo- meres	Schmp. (°C) Farbe	Summenformel (Molmasse)		Analyse			
10 a	272 (Zers.)	C ₇₆ H ₁₂₀ Cr ₄ O ₃₆ P ₂₀ W ₅	Ber.	C 27.12	H 3.60	Cr	6.29
	gelbgrün	(3304.5)	Gef.	C 26.93	H 3.34	Cr	6.80
b	249 (Zers.)	C ₃₁ H ₄₈ Br ₂ Cr ₂ Mn ₂ O ₁₅ P ₈	Ber.	C 29.04	H 3.77	Br	12.46
	gelb	(1288.2)	Gef.	C 29.14	H 3.66	Br	12.96
С	266 (Zers.)	C ₃₂ H ₄₈ Cr ₂ Ni ₃ O ₁₆ P ₈	Ber.	C 31.59	H 3.98	Ni	14.48
	gelb	(1216.6)	Gef.	C 30.46	H 4.15	Ni	13.94
d	158 (Zers.)	C ₃₁ H ₄₈ Br ₂ Mn ₂ Mo ₂ O ₁₅ P ₈	Ber.	C 27.18	H 3.53	Br	11.66
	hellgelb	(1370.1)	Gef.	C 27.93	H 3.72	Br	12.10
e	299 (Zers.)	C ₃₁ H ₄₈ Br ₂ Mn ₂ O ₁₅ P ₈ W ₂	Ber.	C 24.09	H 3.13	Br	10.34
	orangegelb	(1545.9)	Gef.	C 24.46	H 3.16	Br	10.72
f	281 (Zers.)	C ₃₂ H ₄₈ Ni ₃ O ₁₆ P ₈ W ₂	Ber.	C 25.96	H 3.27	Ni	11.90
	hellgelb	(1480.4)	Gef.	C 24.23	H 3.48	Ni	11.23
g	251	C ₁₈ H ₃₆ Fe ₂ N ₄ Ni ₂ O ₁₀ P ₆	Ber.	C 24.47	H 4.10	N	6.34
	rotbraun	(883.5)	Gef.	C 23.75	H 4.59	N	6.76
h	256 – 258 (Zers.) hellgelb	C ₆₀ H ₉₆ Mo ₃ O ₂₈ P ₁₆ W ₄ (2784.2)	Ber. Gef.	C 25.88 C 25.92	H 3.47 H 3.33	Mo Mo	10.34 9.87
i	216 (Zers.)	C ₄₄ H ₇₂ As ₆ Cr ₃ Mo ₂ O ₁₂ P ₆	Ber.	C 29.75	H 4.09	Mo	10.80
	gelb	(1776.3)	Gef.	C 29.94	H 3.88	Mo	10.24

Darstellung des Sechsringkomplexes 9p: Zu 0.98 g (8.00 mmol) P_2Me_4 in 15 ml Toluol wurden bei 0 °C langsam 1.38 g (8.00 mmol) (NO)₂Fe(CO)₂ in 15 ml Toluol getropft. Nach Abklingen der CO-Entwicklung (nach 1/2 h) wurden 1.37 g (8.00 mmol) Ni(CO)₄ zugegeben. 1 h später wurde auf 25 °C erwärmt, und weitere 0.98 g (8.00 mmol) P_2Me_4 wurden einpipettiert. Sobald die CO-Entwicklung aufhörte, wurde innerhalb von 2 h auf 80 °C erwärmt und die Reaktionslösung noch

1364

weitere 1.5 h bei dieser Temp. gehalten. Anschließend wurden 1.40 g (40%) des Oligomeren 10g abfiltriert, je zweimal mit 3 ml heißem THF, Benzol und Petrolether (60 – 70 °C) gewaschen und i. Hochvak. getrocknet. Das Filtrat wurde i. Vak. vom Lösungsmittel befreit, der Rückstand in 20 ml heißem Toluol aufgenommen und diese Lösung mit einer 2 cm \times 70 cm-Kieselgel-Säule chromatographiert (Laufmittel: ausgehend von Petrolether (60 – 70 °C)/Benzol (1:1) über Benzol bis zu Benzol/THF (1:2) kontinuierlich verändert). Die Fraktionen wurden i. Vak. vom Lösungsmittel befreit, die Rückstände in heißem Toluol gelöst, dann die Lösungen mit der dreifachen Menge Petrolether (60 – 70 °C) versetzt, bei – 30 °C die Produkte ausgefroren und die überstehende Lösung abpipettiert. Die kristallisierten Produkte waren in der Reihenfolge der Elution: 0.04 g (2%) 5f, 0.06 g (3%) [(NO)₂FePMe₂PMe₂]₂ und 0.56 g (15%) 9p (schwarze Kristalle vom Schmp. 274 °C).

Die Isolierung der Oligomeren 10 (Tab. 8) ist bei den mit ihnen korrespondierenden Sechsringkomplexen beschrieben. Ihre Spektren mit Zuordnung enthält Tab. 19, ihre Charakterisierung gibt Tab. 20.

- ¹⁾ R. G. Hayter und L. F. Williams, Inorg. Chem. 3, 717 (1964).
- ²⁾ F. A. Cotton und T. R. Webb, Inorg. Chim. Acta 10, 127 (1974).
- ³⁾ K. Triplett und M. D. Curtis, Inorg. Chem. 14, 2284 (1975).
- 4) L. Staudacher und H. Vahrenkamp, Chem. Ber. 109, 218 (1976).
- ⁵⁾ V. Küllmer und H. Vahrenkamp, Chem. Ber. 110, 237 (1977).
- ⁶⁾ E. Lindner und B. Schilling, Chem. Ber. 110, 3889 (1977).
- ⁷⁾ H. Baumgarten, H. Johannsen und D. Rehder, Chem. Ber. 112, 2650 (1979).
- ⁸⁾ R. C. Dobbie und D. Whittaker, J. Chem. Soc., Dalton Trans. 1973, 2427.
- ⁹⁾ H. Schäfer, Z. Anorg. Allg. Chem. **459**, 157 (1979).
- ¹⁰⁾ M. Brockhaus, F. Staudacher und H. Vahrenkamp, Chem. Ber. 105, 3716 (1972).
- ¹¹⁾ H. Vahrenkamp und W. Ehrl, Angew. Chem. 83, 501 (1971); Angew. Chem., Int. Ed. Engl. 10, 513 (1971).
- ¹²⁾ A. Trenkle und H. Vahrenkamp, J. Chem. Res. 1977, S. 97, M 1058.
- 13) Vgl. H. Beurich und H. Vahrenkamp, J. Chem. Res. 1977, S 98, M 1069.
- ¹⁴⁾ O. Stelzer und E. Unger, Chem. Ber. 108, 1246 (1975).
- ¹⁵⁾ Vgl. F. Seel und H. Keim, Chem. Ber. 112, 2278 (1979).
- ¹⁶⁾ E. Röttinger, A. Trenkle, R. Müller und H. Vahrenkamp, Chem. Ber. 113, 1280 (1980).
- ¹⁷⁾ R. B. King (Herausgeber), Inorganic Compounds with Unusual Properties, Advances in Chemistry, Series Nr. 150, American Chemical Society, Washington 1976.
- ¹⁸⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 112, 2347 (1979).
- ¹⁹⁾ R. G. Hayter und L. F. Williams, J. Inorg. Nucl. Chem. 26, 1977 (1964).
- ²⁰⁾ R. G. Hayter, Inorg. Chem. 3, 711 (1964).

[251/80]